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[This paper is part of the Focused Collection on Quantitative Methods in PER: A Critical Examination.]
The application of social network analysis (SNA) has recently grown prevalent in science, technology,
engineering, and mathematics education research. Research on classroom networks has led to greater
understandings of student persistence in physics majors, changes in their career-related beliefs (e.g.,
physics interest), and their academic success. In this paper, we aim to provide a practitioner’s guide to
carrying out research using SNA, including how to develop data collection instruments, setup protocols for
gathering data, as well as identify network methodologies relevant to a wide range of research questions
beyond what one might find in a typical primer. We illustrate these techniques using student anxiety data
from active-learning physics classrooms. We explore the relationship between students’ physics anxiety
and the social networks they participate in throughout the course of a semester. We find that students’ with
greater numbers of outgoing interactions are more likely to experience decrease in anxiety even while we
control for pre-anxiety, gender, and final course grade. We also explore the evolution of student networks
and find that the second half of the semester is a critical period for participating in interactions associated
with decreased physics anxiety. Our study further supports the benefits of dynamic group formation
strategies that give students an opportunity to interact with as many peers as possible throughout a semester.
To complement our guide to SNA in education research, we also provide a set of tools for other researchers
to use this approach in their work—the SNA toolbox—that can be accessed on GitHub.
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I. INTRODUCTION

The principle that information exists within, and because
of, human interactions with one another anchors many
theories of philosophy, sociology, and knowledge develop-
ment [1–4]. Even the knowledge that exists within our
scientific enterprises, however objectively we approach our
research questions, has to go through a series of socially
constructed hurdles before finding acceptance in our
communities. The peer-review process exemplifies that.
For that reason, social scientists, including education
researchers, began to study the nature of interactions

between people and how those interactions facilitate (or
hinder) information flow and development.
The way social interactions affect learning experiences

can vary significantly between individuals. For example,
some students like discussing their ideas to reaffirm their
knowledge [5]. They may face little difficulty when reach-
ing out to others for help or to offer support. As a result,
they may thrive in an environment that promotes peer-to-
peer and student-faculty interactions. Others dread sharing
their ideas in public, especially when these ideas are still
developing. This may be due to a sense of anxiety, a feeling
of self-consciousness, or shyness. Whatever the reason,
such students might have difficulties appreciating active-
engagement learning strategies and even become discour-
aged from persisting in a course [6]. Understanding how and
why students build communities and how these commun-
ities affect their educational well being is essential to
improving their experiences in and beyond the classroom.
One way to approach this problem is to examine student

integration using the tools of social network analysis
(SNA). While SNA does not directly capture the content
of interactions, it allows us to quantify the various aspects

*redou@fiu.edu
†jpzwolak@nist.gov

Present address: National Institute for Standards and Technology,
Gaithersburg, MD 20899, USA

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW PHYSICS EDUCATION RESEARCH 15, 020105 (2019)

2469-9896=19=15(2)=020105(18) 020105-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevPhysEducRes.15.020105&domain=pdf&date_stamp=2019-07-03
https://doi.org/10.1103/PhysRevPhysEducRes.15.020105
https://doi.org/10.1103/PhysRevPhysEducRes.15.020105
https://doi.org/10.1103/PhysRevPhysEducRes.15.020105
https://doi.org/10.1103/PhysRevPhysEducRes.15.020105
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


www.manaraa.com

of relational structures that result from those interactions
[7]. The application of SNA has recently grown prevalent
in science, technology, engineering, and mathematics
(STEM) education research. From classroom network
dynamics and career persistence to school-level group
belonging and information sharing, network methodology
has proven itself useful in helping researchers understand
factors affecting students success in STEM [8–10].
However, while there are resources for those interested
in the application of SNA, the few primers that exist fail to
provide enough detail to carry out nuanced education
studies and the more in-depth textbooks lack a classroom
framework by which to interpret results from such analyses
[7,11–13]. A succinct, higher-level practical guide showing
the entire process from designing relevant tools to collect-
ing data to applying SNA in educational contexts is (to the
best of the authors’ knowledge) currently absent from the
literature. This work is intended to fill in this gap.
For over half a decade we have applied SNA to the field

of physics education research. That work has led to a
greater understanding of student persistence, changes in
their career-related beliefs (e.g., physics interest), and their
academic success [9,10,14–16]. In the process, we have
also established SNA study design in the classroom
context, including development of data collection instru-
ments, setup of protocols for gathering and digitizing data,
as well as identification of network methodologies relevant
to a wide range of research questions. We also built a
software suite—the SNA toolbox—that helps researchers
carry out the network analysis presented in the following
sections. In this paper, we aim to present these approaches
and techniques in SNA using the context of student anxiety,
and to discuss how outcomes and interpretations vary based
on methodological and analytical choices. We focus on
social networks found in classrooms, i.e., networks repre-
senting peer-to-peer and student-instructor interactions.
Our goal is to provide a succinct guide that remains
practical to the education researcher exploring classroom,
departmental, or institution-related interactions between
people, regardless of the specific question being examined.
This is not intended to be a primer. Rather, this paper will

delve into the nuanced aspects of SNA, providing guidance
along the way that goes beyond a basic explanation of a few
centrality measures, and will address considerations for
collecting data, performing analyses, and interpreting out-
comes. Finally, we focus solely on the context of the physics
classroom, using our research of student anxiety in an active-
learning setting to illustrate the content. Nevertheless, the
applications of the SNA topics addressed here, as well as the
provided SNA toolbox code [17], can be used in other
physics education research contexts (and beyond).
The paper is organized as follows: After a brief overview

of research on anxiety in the introductory physics class-
room (Sec. II) and after introducing the physics anxiety
survey (Sec. III A), we proceed to the first major section:

the “Social network analysis survey” (Sec. III B). This
section addresses questions one should consider when
determining data collection context, survey development,
administration of surveys, and handling of multiple col-
lections. In particular, we discuss what constitutes social
interactions and how one can measure them. We then
introduce different types of social networks and present
guidance on developing surveys that yield the network type
of interest. We also introduce measures that can be used to
examine weighted network data, as well as guidelines for
their interpretation within the classroom context (e.g., what
does it mean for a student to have high “closeness”
centrality, Sec. III C). Finally, we discuss practical aspects
of data collection: the administration of surveys, handling
of multiple collections, accounting for non-normality of
data and handling missing data (Sec. III D). The statistical
analysis techniques that we use are presented in Sec. III E.
The second major section, “Analysis and results” (Sec. IV),
shows practical applications of the proposed methodologies
in the context of students’ physics anxiety in active-
learning introductory physics courses. We conclude with
a discussion of our findings, limitations of this work, and
recommendations for future directions in Sec. VI.
To make the discussed methodologies more user-

friendly, we established a GitHub repository where we
make available the R source code together with a manual
and a simple reproducible example that can be easily
adapted and used to carry out SNA analyses (open source,
available at GitHub [17]). While presently the SNA toolbox
includes only code used in the analysis from this manu-
script, it will be continuously maintained and extended
further based on the needs of and requests from the science
education community.

II. ANXIETY IN THE INTRODUCTORY
PHYSICS CLASSROOM

To explore the relationship between physics anxiety and
in-class student interactions in an active-learning setting, we
adopt a participationist framework. Participationists pri-
marily view learning as “the development of ways in which
an individual participates in well-established communal
activities” [18]. Learning is perceived as a construction of
mutual understandings within a social context, with empha-
sis placed on examining discourse and interactions rather
than “acquisition” of knowledge as a commodity or object
[19]. As such, we espouse the philosophy that “learning and
social interactions are not mutually exclusive” [14].
Our motivation to focus on physics anxiety is predicated

on our belief that anxiety shapes how and to what extent
students participate in classroom activities. If physics
anxiety hinders participation, our framework suggests
learning, too, may suffer. Prior work in the realm of social
anxiety—not physics anxiety, per se—has found negative
correlations with participation in activities that may be
present in active-learning settings. For example, it has been
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suggested that social anxiety leads to risk-averse behaviors
as individuals seek to preserve how others perceive their
image or identity [20]. Such behaviors can lead to reticence
or complete unwillingness to present before an audience,
particularly in settings framed around the evaluation of
content being shared. Active-learning curricula often nur-
ture these kinds of settings, where students publicly present
results to one another. Even when public presentations are
not directly related to evaluation, the perception of being
evaluated can have an impact on behavior [21]. Hills calls
out constructivist teaching styles in particular [22]. In his
study of pre-service math and science teachers, he found
that those with high social anxiety tended to exhibit risk-
aversion behavior, which manifested in the classroom as
low group participation and avoidance of open-ended math
problems. Even the productivity of group brainstorming
has been shown to be negatively affected by the level of
group members’ social anxiety [23].
The correlation between various types of anxiety and

physics learning at the undergraduate level have been
documented by several researchers. Williams found that
students who reported feeling anxious about communicat-
ing in class, even in nongroup, whole-class settings (e.g.,
when an instructor poses a question to the class) were less
likely to score well on multiple-choice exams and less
likely to exhibit large gains on the Force Concept Inventory
(FCI) [24,25]. Engineering students’ math anxiety while
learning electricity and magnetism has been shown to be
negatively correlated with course exam scores, as well as
conceptual understanding [26].
The idea that, in addition to communication and math

anxiety, physics anxiety should be considered as a unique
construct that affects physics learning is over thirty
years old and has been associated with studies related
to gender differences in physics learning [27]. More
recently, Sahin [28] explored the physics anxiety of pre-
service teachers pursuing careers in science, math, and
primary education (e.g., physics education, secondary
math education) who were, at the time, enrolled in an
introductory physics course. Outcomes of this study
showed that those in the physics education program
exhibited less anxiety than those in any of the other
programs. Moreover, it was found that significant gender
differences existed for physics-focused majors, such that
female pre-service physics teachers were more likely to
exhibit higher physics anxiety than their male counter-
parts. The study also found that students with high physics
anxiety tended to have earned either low (i.e., <2) or high
(i.e., >3) GPA; this quadratic association between anxiety
and academic performance ran contrary to literature that
supports a linear, indirect relationship between anxiety and
performance (e.g., the higher your anxiety the lower your
GPA). A quadratic relationship may suggest that anxiety
plays dual roles, depending on the individual, either
suppressing or supporting performance.

The relationship between anxiety, participation, and
student outcomes motivated our exploration of the potential
social mechanisms through which it manifests in an active-
learning, student-centered classroom. As described earlier,
past research identifies participation in academic activities
as a factor of student anxiety. Thus, we expect students’
physics anxiety to have a negative effect on their partici-
pation. We also take into account past research identifying
social support as a mitigator of anxiety [29]. We thus expect
to find a relationship between changes in anxiety and
students’ social embeddedness within the classroom net-
work, such that students who seek out relationships with
their peers will be more likely to feel less anxious about
physics over time. We also hypothesize that the frequency
with which students carry out repeated interactions with
the same individuals exhibits a weaker relationship with
anxiety than the number of unique individuals a student
interacts with (e.g., having a greater number of people to
provide possible support). Additionally, our analyses take
into account students’ self-reported gender and final
course grade.

III. METHODOLOGY

In this section, we present the Physics Anxiety Rating
Scale (PARS) [30] and the social network survey we use to
collect data for this study. We also discuss some of the
considerations we took into account when designing our
examination of physics anxiety through a social network
lens. For completeness, we include the “Social Network
Analysis Toolbox” section that presents network measures
we rely on when comparing data between different groups
and sections. While not exhaustive, this list is intended to
give flavor for what kind of information can be extracted
and quantified using SNA.

A. Physics anxiety survey

To measure students’ physics anxiety, we use a 16-item
version of the PARS developed by Sahin [30]. The PARS
asks students to rate their agreement with a variety of
statements on a 5-item Likert scale ranging from strongly
disagree (1) to strongly agree (5). The statements include
the following: “I would feel very embarrassed if the
instructor corrected the answer that I gave to a physics
question in front of the class,” “being unable to use units of
quantities appropriately in physics courses makes me very
anxious,” and “when solving a physics problem, I worry
about not being able to recall relevant formulas or physics
laws.” The data is typically collected through a pre- and
post-survey, using the same instrument at the beginning and
end of the semester, which captures changes in anxiety. The
Cronbach’s alpha reliability coefficient is 0.92 on the scale
using predata and 0.94 using postdata.
Since all students coming to the class are expected to

have some level of anxiety [31], which typically varies
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across individuals, we are interested in the anxiety shift
rather than the raw anxiety score. As the semester goes on
and students experience the curriculum, we expect to see an
increase or decrease in their anxiety score, depending on
their learning experiences. We avoid ascribing value to
initial student anxiety (e.g., high anxiety is bad, low anxiety
is good), since such practices can conflict with past
research indicating that certain levels of anxiety positively
correlate with quality performance [32].
To provide a measure of the anxiety shift over time, we

calculate the normalized anxiety shift defined as the ratio of
the absolute shift to the maximum possible shift [33]:

snorm ¼ post− pre
highest possible score− pre

; ð1Þ

where pre and post denote the score of a student on the
anxiety survey before and after the course, respectively. This
approach allows a comparison of shifts between students
with varying prescores. The highest possible score on this
survey is 80 and the lowest possible score is 16. Note that, as
this measure was developed to assess the expected average
gains on the FCI (i.e., positive shifts averaged over the entire
class), it is not robust against dramatic drops in scores of
individuals. In particular, for the PARS survey the snorm will
be outside of the ½−1; 1� boundaries when the prescore is
over 48 and the post-score is lower than 2ðpre − 40Þ (see
AppendixA formore details). As such, the snorm can be used
to identify potential “outliers”—amedium to high precourse
score followed by an unexpectedly low postanxiety may
identify students who did not offer reliable responses on the
post-survey. After careful considerations it might be advis-
able to either remove the unusually low post-scores and
impute the missing data or to remove such individuals from
analyses altogether.

B. Social network analysis survey

Identifying a relevant theoretical framework prior to
designing social network research provides boundaries and
guidance for the measurement instrument (e.g., survey
design), analysis (e.g., correlational study), and interpre-
tation. Here we discuss the design of the SNA survey that
we use to gauge classroom participation. Like any other
research tool, SNA should be applied only when the
context of a study makes it an appropriate tool. In what
follows, we discuss when SNA is the right method of
analysis, what constitutes social interactions, and how one
can measure them. We also discuss the practical aspects of
data collection, including administration of surveys (e.g.,
online vs in-person, one-time vs longitudinal collection)
together with brief analyses of pros and cons for each
approach. The main purpose of this section is to present
guidance on developing surveys that yield accurate and
relevant networks. To illustrate the process we explain how
our study meets the requirements. During the design of the

SNA survey and its administration, we carefully considered
our responses to all questions posted below.

1. Q1: Is SNA an appropriate tool to help
answer my question?

To use SNA, the research question(s) have to be related
to interactions of some kind, be they students working in
groups, email exchanges, participation in a forum, or
coauthoring a paper, to name a few. Moreover, interactions
do not need to be pronounced or apparent. For example,
group membership may not reflect actual verbal exchanges
between students in class, but may be related to accessing
resources or information nevertheless (e.g., being invited to
join a study group hosted on a mobile app). In our study, we
want to explore how engagement in a student-centered
physics classroom contributes to anxiety shifts while also
taking precourse anxiety into account. Our focus on
student-student interactions lends itself to quantification
via SNA.

2. Q2: What interactions am I interested in?

Although the context of a study helps to establish how
interactions should be defined (e.g., conversations, joint
papers, participating in the same meetings, etc.), one needs
to decide early on what additional characteristics of interest
to incorporate. For instance, is it important to know who
initiated a given interaction [i.e., directed vs undirected
networks, see Figs. 1(a) and 1(c)]? Is it important to know
how frequently a given interaction occurred or does it only
matter whether it took place [i.e., weighted vs binary
networks, see Figs. 1(a) and 1(b)]? Whose perspective
matters—the initiator’s or the receiver’s? Should all mem-
bers of a particular group be included in the network?
For our study, we define “interaction” as a meaningful

(from a respondent’s perspective) in-class interaction
related to physics. This may include, among other behav-
iors, a discussion of ideas, joint work on a problem, as well
as listening to others solve or discuss problems. We also
want to know the frequency of interactions between the
same two individuals in a given week. Thus, we opt to
collect directed network data that captures the frequency
with which the interactions take place within a given
collection period [see Fig. 1(d) for a visualization of this
type of network]. This grants us flexibility during the
analyses to calculate centrality measures that place more or
less emphasis on both directionality and frequency.
Similarly, we invite students to provide information about
their interactions with professors, knowing that we can later
remove those interactions if we decide to focus solely on
the peer network. In particular, students are asked to “…
choose from the presented list people from [their] physics
class that [they] had a meaningful interaction with in
class … even if [they] were not the main person speaking
or contributing” (see tools in the SNA toolbox for the
complete SNA survey [17]). Students are directed to
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consider all interactions that took place during the week
prior to completing the survey, including interactions with
peers outside of their small groups. As mentioned earlier,
they are not given written parameters for what counted as a
“meaningful” interaction, but, when asked, we encourage
them to think about interactions related to course-related
activities and content. To aid recall of their peers’ names, we
provide them with a randomized roster of all individuals
enrolled in class, together with names of the teaching staff.

3. Q3: How can I collect network data?

There are multiple ways one can collect social network
data: videotaping the course, administering a pen-and-paper
survey in class, asking students to complete an online survey
(either in class or at home), using a course-related forum to
track students’ interaction, etc. Each of these approaches has
its own set of pros and cons. With videos one has access to
the entire course, which provides a very rich data set. It
allows for a fine-grained analysis of, e.g., the network
evolution in real-time. However, the extraction of networks
from videos can be challenging. From establishing a reliable
coding dictionary that minimizes coder bias, to determining
the most informative time stamp for “slicing” the data, to

codingwhat could be hours of videos, this approach requires
a lot of time and effort [34].
Pen-and-paper surveys take significantly less time, most

of which is spent on establishing a protocol for digitizing
the responses and converting them into a network. Once
established, such a protocol can be utilized on consecutive
collections. Nevertheless, pen-and-paper surveys require
time to develop and place an extra cognitive load on
individuals completing them. Moreover, such surveys
can be biased and not fully representative of what was
happening in class, especially early on in a course when
respondents do not know the names of all other participants
and relationships are not yet well formed.
The same applies to online surveys, though in this case

converting responses into network data can be handled with
a simple script. When administered outside of class time,
online surveys tend to suffer from lower response rates.
E-mail exchange or forum-based networks offer the same
advantages in terms of converting responses into network
data with the use of a script. However, as with video data,
one has to carefully decide what constitutes an interaction,
which is not always straightforward (e.g., handling
“nested” posts on a forum). Such networks can also suffer
from lower response rates, particularly because of missing
data from students who read posts or emails but do not
respond to them [35]. Another thing to consider is whether
the participants should receive any incentives for taking
part in the study (e.g., course credit, gift cards).
Since a pilot study with both pen-and-paper and com-

puter-assisted versions of the survey revealed that the
online approach tends to be more time consuming and
more confusing to students, we decided to collect data
using the pen-and-paper format. To maximize the response
rates we collect data in the classroom, at the end of a
particular class. Our participants do not receive any direct
benefit from completing the survey (e.g., extra points,
reduced workload). Moreover, during the administration
students are invited to inquire about the purpose and out-
comes of the study by contacting either the professor or the
survey administrators.

4. Q4: How often should I collect network data?

Another thing to consider is how often one intends to
collect the data and when is the best time for collection. The
number of collections should be guided by the research
question, collection method, as well as previous research.
How much extra burden one is willing to put on students
and, for in-class collections, how much class time one is
willing to spend on administering surveys also needs to be
taken into account.
In our case, we want to look at students’ social

embeddedness within the in-class network as a predictor
of anxiety shift over time, so it is appropriate to collect
network data at least at the beginning and end of the
semester. To capture a more granular picture of network

FIG. 1. Visualization of various types of networks. In undi-
rected social networks, see (a) and (b), relationships or inter-
actions are assumed to be reciprocal (e.g., if A is a classmate of B,
B is naturally also a classmate of A). In directed networks, see (c)
and (d), the meaning of a relationship or an interaction is different
from the initiator’s perspective (an arrow tail) than from its
receiver’s (an arrowhead; e.g., A commented on B’s homework
solution but B did not say anything about A’s work). In binary
networks, see (a) and (c), only the presence of an interaction
(pictured as an edge) matters, but not its frequency (illustrated by
varying thicknesses of edges; e.g., A and B worked together on
homework assignments while A and D did not). In weighted
networks, see (b) and (d), more frequent interactions are assumed
to be more meaningful (e.g., A and B worked together on
homework assignments once while D and E worked together
on homework assignments every week).
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evolution, given student-group rotation and other curricular
features, we added three additional administrations
throughout the semester, spaced every 3 to 4 weeks. We
chose five collections to allow enough time for the network
to change between collections. During each survey admin-
istration students are reminded that their participation is
strictly voluntary. Anecdotal data from past research using
similar, in-class surveys suggests that more than five
collections may cause survey fatigue.

5. Q5: How should I work with longitudinal data?

Collecting data multiple times throughout the semester
gives one flexibility when preparing data for analysis.
Longitudinal data allow one to study network evolution.
Treating each collection as a separate dataset enables one to
observe changes in the network as time goes on. For
instance, comparison of pre- and postcourse data from
lecture-based and active-engagement classrooms reveals
that only in the latter case the in-class network becomes
connected, while the former does not show any develop-
ment after a semester of instruction [36]. Analyses of in-
class networks from active-learning introductory physics
courses show that networks gradually evolve throughout
the semester, suggesting that such environments are in fact
conducive to establishing a relationship network of aca-
demic and emotional support [9,16]. However, longitudinal
approaches are more sensitive to missingness, as it is quite
likely that different individuals may be physically absent
during different survey administrations.
Aggregating multiple collections into one network rep-

resenting the entire semester helps with missingness, as it is
reasonable to assume that each student should be in class
during at least one collection. Since the survey distribution
schedule was not announced at any point, it seems unlikely
that students could intentionally try to avoid classes when
data are collected. At the same time, if a given student is
absent across multiple survey administrations, it might
signal that the individual is skipping more classes and thus
is not getting immersed in the social environment. Treating
such an individual as disconnected from a classroom
network might thus be the appropriate thing to do.
However, aggregation limits the amount of information
contributing to a complete understanding of the network’s
evolution [10,14].
For weighted, directional data there are a multitude of

ways network data can be aggregated. This can range from
simply combining all collections, with weights in the final
network calculated as a sum of weights across all collec-
tions, to more nuanced computations involving weighted
averaging between collections. Alternatively one might
simply assign weights based on either the presence or
absence of an interaction on a particular collection. The
decision of whether to aggregate (and how to proceed with
aggregating) should be guided by the research question,

previous studies on the population being examined and, if
possible, rooted in a theoretical framework.
Since we ask students to report meaningful interactions

that took place during a defined period of time (the week
prior to each data collection) and we do so five times during
the semester, aggregating all data into one network will
result in the loss of information about which interactions
happen due to convenience (i.e., sitting at the same table)
and which survive the test of time (i.e., recurrent inter-
actions regardless of group membership). Thus, in our
analyses we treat each collection as a separate network.
This allows us to capture the effect of modifications to the
seating arrangements and the group exam on the evolution
of the network throughout the semester.

6. Q6: How can I quantify social interactions?

Some of the remaining considerations include how to
convert interaction data into a network and then how to
analyze the resulting network. As mentioned when discus-
sing the different tools for collecting SNA data (Q3), the
protocol for converting data into a social network will
depend on the particular data collection approach. When
digitizing data, one should retain the capability of format-
ting identified interactions as interaction matrices or lists of
the pairs involved in an interaction (i.e., edge lists). Once a
matrix or an edge list is created, SNA provides a very rich
toolbox for analysis. From various network topology
measures to a multitude of centralities, there is plenty to
choose from. In general, one can examine the interactions
in a network from one of two broad perspectives: whole
network connectedness (i.e., network topology) and indi-
vidual node-level measures (i.e., centralities).
To digitize our pen-and-paper surveys into networks, we

developed a spreadsheet with built-in self-checks in order
to minimize coding errors. The spreadsheet is available as
part of the SNA toolbox [17]. As mentioned earlier, we
opted to keep each collection as a separate network. To
examine students’ interactions, we calculate three centrality
measures discussed in Sec. III C. Our choice of these
particular indices is guided by their ability to capture the
kind of immersion within the network that we hypothesize
to be relevant for anxiety shifts—overall embeddedness in
the case of closeness and individual-level connectedness in
the case of indegree and outdegree. This approach is also
supported by previous research that found these measures
to be informative when studying performance [16] and
persistence [9,10], both of which are related to anxiety.

C. Social Network Analysis toolbox

There are two basic types of static network measures: the
network-level measures that describe characteristics of the
network as a whole and the node-level measures that focus
on characterizing the relational position of a particular node
quantitatively. In what follows, we use the term “node” in
reference to the individuals that make up a social network

REMY DOU and JUSTYNA P. ZWOLAK PHYS. REV. PHYS. EDUC. RES. 15, 020105 (2019)

020105-6



www.manaraa.com

(note that social sciences often use the term “actor” instead)
and “edge” (also called “tie” or “link”) when referring to
the interaction between two nodes. The following section
gives a brief overview of the most commonly used tools for
quantifying interactions from an SNA perspective. All
metrics discussed are implemented in the SNA toolbox [17].
When choosing to combine data across multiple groups

(e.g., multiple sections of the same course) or when
comparing data from different collections in the same
group, it is important to verify that the networks are similar
enough to justify aggregation or comparison. Network
topology offers understanding of how nodes are connected
with one another on a global level. This includes character-
istics like network size, density, and distances between
nodes. For example, density (Δ) offers insight about the
overall cohesion of a network and is expressed as the
fraction of existing edges between nodes to the number of
all possible edges:

Δ ¼ number of present edges
number of all possible edges

:

The number of all possible edges between n nodes is
expressed as nðn − 1Þ=2 for undirected graphs and as
nðn − 1Þ for directed graphs [37]. Density analyses produce
values between 0 and 1. Active-learning physics class-
rooms have been shown to exhibit greater density than
traditional, lecture-based classrooms [36].
Network diameter and average path length are other

metrics related to network-level connectedness. Diameter
(D) gives a network’s longest path—where path is defined
as the number of edges in the sequence of edges connecting
two nodes in a network—and captures the span of a
network. Average path length (L), on the other hand, gives
the average shortest path between all possible pairs of
nodes. It provides information about how close (on
average) nodes are to one another [37].
The global clustering coefficient (transitivity, Tr) cap-

tures the degree to which nodes tend to cluster together. It is
based on the notion of open and closed triplets in a network,
where a triplet is defined as three nodes connected by either
two (open triplet) or three (closed triplet) undirected edges
[37]. Transitivity is defined as a fraction of closed triplets of
all triplets (opened and closed) in the network:

Tr ¼ number of closed triplets
number of all triplets

:

Since by definition transitivity is calculated for undirected
and unweighted networks, networks that are more complex
in nature have to be flattened prior to analysis. This, in turn,
allows one to vary the strength of transitivity. For instance,
requiring that all edges in triplets are bidirectional will lead
to a stronger global clustering coefficient than the simple
presence or absence of edges. Similarly, requiring that all

edges in a triplet are of weight at least w, where w ≥ 1, will
result in stronger transitivity the larger w is. Recently, a
generalization of the global clustering coefficient that
includes weight was proposed [38]. Since we use transi-
tivity only to establish similarity between our networks and
do not use it in analysis, we find the basic, binary version to
be sufficient.
Finally, reciprocity (ρ↔) captures how frequently inter-

actions are mutual. It is calculated as a fraction of all the
interactions that are bidirectional [37]:

ρ↔ ¼ number of bidirectional edges
number of all present edges

:

Once similarity of networks between groups or collec-
tions is confirmed, one can proceed to quantifying the
position of each node within the network. This is most
commonly done by calculating centrality measures. There
are a myriad of such measures, from localized, i.e., focused
on a particular node and its direct connections [see, e.g.,
Figs. 2(a) and 2(b)], to global measures that take into
account the entire network [see, e.g., Figs. 2(c) and 2(d)].
The choice of a particular measure depends of the context
of the study. There are various textbooks that give a good
introductory [39] and more advanced [7,37] overview of
centrality measures, as well as primers that explain their use
in different contexts (see, e.g., Ref. [11] for a primer in
science education research). Here, we only briefly describe
measures that we use in our analysis.
Building on our previous work [9,10,14–16], we calcu-

late the following three measures: indegree, outdegree, and
closeness. Put simply, indegree can be thought of as a
measure of popularity. It is calculated as the number of
edges directed towards a given node. Outdegree—the
number of edges that a given node sends to others—can
be interpreted as sociability or influence. Finally, closeness
captures how well a given node is embedded within the
entire network—the “closer” a given node is to everyone
else in the network, the more access that person might have

FIG. 2. Visualization of various types of centralities. In each
case, X has higher centrality than Y according to (a) indegree (can
be thought of as a measure of, e.g., popularity), (b) outdegree (can
be thought of as a measure of, e.g., sociability or influence),
(c) closeness (a measure of overall connectivity or embeddedness
within the entire network), and (d) betweenness (a measure of
control over the flow of, e.g., information through the entire
network). Adapted from Ref. [9].
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to resources (e.g., knowledge, educational or emotional
support, information about study groups). Here we use the
weighted generalization of these measures that accounts for
both the edges’ weights and their number [40], with the
parameter α tuning the relative importance of these two
factors. Formally, for degree

Cα
DðiÞ ¼ ði’s binary degreeÞ

�
i’s strength

i’s binary degree

�
α

ð2Þ

where α ∈ ½0;∞Þ is the tuning parameter, the node’s binary
degree is the number of incoming edges for indegree and
outgoing edges for outdegree, and the node’s strength is a
sum of weights of incoming edges for indegree and
outgoing edges for outdegree. If α ¼ 0, then Cα

D gives
the binary degree and if α ¼ 1, then Cα

D returns the overall
sum of all weights (i.e., strength). When α ∈ ð0; 1Þ, having
many weak connections is emphasized over a few strong
ones (keeping overall strength fixed). When α > 1, it is
favorable to have a few strong connections (for the same
total strength).
For closeness,

Cα
CðiÞ ¼

�
sumof weighted shortest
paths to all other nodes

�
−1
; ð3Þ

where the shortest weighted path linking i and j is defined
as dαij ¼ min ðw−α

im þ � � � þ w−α
nj Þ. Like with degree, for

α ¼ 0, the binary version of closeness results (i.e., the
weights are ignored), while for α ¼ 1 only the weights are
important. If α ∈ ð0; 1Þ, a shorter path of weak ties is
favored over a longer path with strong ties and for α > 1 the
number of intermediary nodes is less important than the
strength of the ties. To explore the relative importance of
the number of ties and their weights we use multiple values
for the alpha coefficient.

D. Other considerations

1. Accounting for non-normality

Given the interdependence of network data, its distribu-
tion often fails tests of normality. For example, when
student A reports one outgoing interaction with peer B, by
definition a researcher records an incoming interaction for
peer B. Because one student’s responses can affect another
student’s responses, interaction data often violates the
assumption of independence required by typical statistical
analyses. Moreover, centrality measures are not always
normally distributed, which violates requirements of linear
regression models.
Despite linear regression being relatively robust against

minor deviations from normality, we take a more
conservative approach and use linear regression permuta-
tion tests to address these violations [41]. Linear regression
permutation tests involve a type of Monte Carlo method to

randomly sample a data set, rearranging the values of its
variables across all observations. A linear model is tested on
this resampled data set, which generates a set of regression
estimates. The regression estimates of the original data set
are then compared to the distribution of estimates generated
from the permuted sets in order to determine the reliability of
the outcomes. In addition to not requiring data to be
normally distributed, this kind of test helps to minimize
false positive findings (i.e., type I error).

2. Handling missing network data

Regardless of whether the data collection takes place in
or outside of the classroom, through pen-and-paper or
online surveys, it is quite unlikely that any given collection
will solicit a 100 % response rate. Students may not show
up to class on a day when data are collected, they might
leave early, or may choose not to complete the question-
naire. In any case, response rates should be considered
when choosing an approach for handling missing data. To
do so, one must first define the network boundaries.
Classroom networks can be defined by one of two

typical boundaries: (A) students officially enrolled in the
class or (B) students who choose to share network data. The
former treats all enrolled students as members of a network
on each collection, with absentees and nonrespondents
contributing to the overall “missingness” of the network.
The latter boundary posits classroom participation (e.g.,
attendance on the day of data collection) as a qualifier for
inclusion in the network. Both approaches have pros and
cons. Boundary “A” is most inclusive, taking into account
the behavior of all students enrolled in a course, regardless
of their attendance or participation throughout the semester.
Research questions that aim to understand broad ranges of
social behaviors lend themselves to this approach. On the
other hand, researchers interested in specific types of
behavior (e.g., peer-peer interactions) may want to take
the second approach and limit the network boundary to
those present, given that a student’s absence does not
necessarily reflect their in-class social behavior. Regardless
of the approach, missingness will almost always be present.
The challenges that result from missingness in a network

stem from the inherent interdependence of network data. A
student’s behavior in a network not only affects their
position in the network, but also the position of others
in the network regardless of whether or not the student in
question directly interacts with everyone in the network.
Typical methods for handling missing data, such as
imputation techniques, do not take into account data
interdependency; while they may predict a given individ-
ual’s centrality scores, they fail to account for how that
would affect the scores of all others in the network.
Replacing missing data with substitute values increases
the chances of significantly changing the properties of the
network. On the other hand, it has been shown that
centrality scores are fairly robust to random missingness.
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For example, for small networks (40 to 75 nodes) the level
of missing data that does not affect the overall structure is
up to 35 % for directed degrees and about 20 % for
closeness centrality [42]. The missingness in our network
data falls within these thresholds and therefore no impu-
tation was used. However, if the missingness falls outside
of those thresholds, it may not be possible to do a whole-
network analysis. One can still try to examine ego net-
works, i.e., build networks based on all data available but
look only at individuals who responded to the survey. Such
initial analysis can be then complemented by, e.g., inter-
views or data from registrars. In either case, caution should
be taken when drawing conclusions in light of what data are
available.

E. Statistical analysis

The dependent variable in our study is continuous (the
normalized shift in anxiety). To investigate relationships
between students’ precourse anxiety, network centralities,
gender, final grade and their shift in physics anxiety, linear
regression modeling is used. To control for confounding
factors, we perform multiple linear regression, but only
after running simple linear regressions in order to determine
the earliest time when the interplay between physics
anxiety and centrality becomes significant.
In the first stage, we want to determine which centralities

carry significant information about the anxiety shift. To do
so, we run simple linear regression models with a single
centrality (from the last collection) as a predictor (i.e.,
anxiety shift ∼ centrality). To explore the relative effect of
the number of edges and their weights, we test four values
of the tuning coefficient: α ¼ 0.0 (only the number of edges
matters, weights are ignored), α ¼ 0.5 (it is better to have
more edges, keeping strength fixed), α ¼ 1.0 (only the total
strength matter, regardless of the number of edges) and
α ¼ 1.25 (it is better to have less edges, keeping strength
fixed); see Sec. III C for details.
In the second phase, we want to take advantage of the

longitudinal nature of our data. Having identified the
statistically significant centralities from the last survey
administration, i.e., our fifth collection, we investigate
which of those measures remain significant on earlier
administrations. To do so, we test simple linear regression
models for all earlier collections, i.e., collections one
through four. We then compare the fits of the models to
determine the relative importance of the number and
weights of edges and identify the most useful tuning
parameter α value for our purposes.
Finally, after identifying the earliest informative collec-

tion and α value, we move to testing full linear models
(i.e., anxiety shift∼centralityþ genderþ final gradeþ pre-
anxiety). The variance inflation factor for the final model,
ranging from 1.0 to 1.1, indicates no collinearity between
variables.

To account for the fairly large number of tested models,
we run each test as a permutation test. As previously
described, the permutation test randomizes the matching
between independent and dependent variables and com-
pares the true regression estimates to the distribution of
estimates calculated across a certain number of iterations of
randomization. In our study, we use 5000 iterations. Again,
the use of permutation tests helps to address two concerns
that arise when dealing with network data: (i) missing data
and (ii) violation of the assumptions of normality and
homoscedasticity (i.e., same finite variance for all random
variables in the sequence).
For the statistical analyses, we use the R statistical

programming language [43]. In particular, we use the
lmPerm [44,45] package for the permutation test for linear
models, the Amelia [46] package for imputation of anxiety
data, and the igraph [47] and tnet [48] packages for network
analysis. The chi-squared test and Fisher’s exact test are
used to test for statistically significant differences between
classroom sections in terms of gender and ethnicity. The
one-way analysis of variance (ANOVA) is used to compare
the two section in terms of students’ GPA, and a paired
t-test is used to compare the anxiety scores between
sections. The Kolmogorov-Smirnov test is used to compare
the original and imputed PARS scores, and the Shapiro-
Wilk test is used to test for normality of the centrality
scores’ distributions. To adjust the false discovery rate the
Benjamini-Hochberg procedure is implemented [49]. We
consider results with p < 0.05 as significant. All protocols
in the project were approved by the Florida International
University Institutional Review Board (IRB-13-0240
exempt, category 2).

IV. ANALYSIS AND RESULTS

This section describes practical applications of the
proposed methodologies in the context of students’ physics
anxiety in introductory physics courses. We set out to
understand whether students’ social interactions and posi-
tioning in the classroom network is predictive of their shift
in physics anxiety while controlling for their precourse
anxiety, self-reported gender and final course grade. We
also want to understand when during the semester, if at all,
does social integration begin to matter with regard to shifts
in physics anxiety.

A. Demographics

The data for this study were collected at a large research
university, designated as a Hispanic-Serving Institution. In
particular, we survey students enrolled in the Introductory
Physics I with Calculus course taught using the Modeling
Instruction (MI) curriculum. Because of its inquiry-laden,
discourse-based approach, MI provides an ideal context for
studying the range of possible student-student interactions
in an introductory physics classroom [50,51]. The course
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combines lab and lecture components of Physics I, engag-
ing students with hands-on, group activities in which they
develop models of physical phenomena through the use of
various representations (e.g., equations, graphs, diagrams
or a combination thereof) [52]. Students work in small
groups of three, with two small groups typically sharing a
table, in order to develop representations relevant to the
problem at hand. Then students come together in larger
groups of about 25 to 30 to discuss the small group
findings. Instructors, teaching assistants, and learning
assistants facilitate both large and small group discussions.
Traditional lecture rarely occurs during the semester.
Instead, students participate in a flexible classroom space
designed for active learning. Chairs and tables are movable
and students are provided with portable white boards. They
are permitted to communicate with peers in other groups
and often do so. Small group membership is randomly
selected and changes several times throughout the semester.
The data for this analysis come from two MI sections

offered in fall 2016 (NF16A ¼ 53, NF16B ¼ 73). There were
two instructors teaching the course, both with several years
of experience teaching introductory physics using student-
centered curricula, including MI. Student demographic
data were queried from a university database and include
self-reported gender (binary: female or male, with 41.5 %
females in section A and 50.7 % females in section B),
ethnicity (see Table I for details), incoming GPA, and final
course grade. We find no statistically significant differences

between sections in terms of gender [chi-squared test,
χ2ð1Þ ¼ 0.70, p ¼ 0.40] and ethnicity (Fisher’s exact test,
p ¼ 0.06) distributions. There is also no significant differ-
ence in mean incoming GPA between groups [one-way
ANOVA, Fð1;123Þ¼ 2.04, p ¼ 0.16, note that the GPA
for one student was not available].

B. Analysis of physics anxiety

Students’ total scores on the PARS were generated by
adding up the sum of their scores on the individual items on
the survey. Paired samples t-tests showed no significant
difference between the mean pre- and postcourse anxiety
total scores, regardless of instructor (t ¼ 0.74, p ¼ 0.46 for
section A, t ¼ −1.74, p ¼ 0.09 for section B), nor when
combining instructor data (t ¼ −0.65, p ¼ 0.52). Since not
all students were present when the anxiety survey was
administered, there were missing scores: 8 for presurvey,
21 for post-survey, and additional 7 for both. To account for
the missing data, we ran a single imputation. Figures 3(a)
and 3(b) show the comparison of distribution for the pre-
and post-scores for original (yellow hatched pattern) and
imputed (solid blue) data, respectively. The two sample
Kolmogorov-Smirnov test showed no statistically signifi-
cant differences in the distributions, with p ¼ 1 for both
pre- and post-scores.
With the imputed data, the average anxiety score at the

beginning of the semester for instructor A’s section was
Mpre

A ¼ 38.2 (standard deviation SDpre
A ¼ 11.3) and for

instructor B’s section—Mpre
B ¼ 37.5 (SDpre

B ¼ 12.2). The
average anxiety measure at the end of the semester in
instructor A’s class was Mpost

A ¼ 41.9 (SDpost
A ¼ 13.3) and

in instructor B’s class Mpost
B ¼ 36.2 (SDpost

B ¼ 13.5). Given
the lack of statistically significant differences between the
two instructors (t-test, t ¼ 0.89, p ¼ 0.38) we combined
the data from their courses (N ¼ 126).
The range of the imputed PARS scores went from

(16, 63) at beginning of the semester to (16, 79) at the
end [for the nonimputed post scores it is (16, 74)]. The range

TABLE I. Students’ ethnicity distributions. The numbers re-
present the percentage of students in a given group.

Section A Section B

Asian 15.1 2.7
Black 11.3 12.3
Hispanic 60.4 72.6
White 3.8 8.2
Other or NA 9.4 4.1

(a) (b)

FIG. 3. Comparison of the original (yellow hatched pattern) and imputed (solid blue) data for (a) the anxiety prescores and (b) the
anxiety post-scores.
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increases slightly from pre- to post-responses. Qualitative
analysis of histograms reveals slight right skewing when
comparing the scores from pre- and post-surveys, indicating
that while the overall mean did not change significantly
across the semester, individual students’ anxiety did expe-
rience some shifts, see Fig. 4(a). For the following analyses,
we use individual students’ normalized shift in anxiety in
order to take into account their maximum possible shift, see
Fig. 4(b) for the shift’s distribution.

C. Analysis of student networks

As mentioned in Sec. III C, when analyzing network data
from multiple groups, it is important to verify that there is
foundation for aggregating the data. The response rates to
the survey were fairly comparable between sections:MA ¼
80.2 (SDA ¼ 6.8) and MB ¼ 79.4 (SDB ¼ 11.0). The
Kruskal-Wallis test shows no statistically significant
differences in response rates between the two sections
[χ2ð1Þ ¼ 0.01, p ¼ 0.92]. The whole network character-
istics, as well as various students’ centrality scores, were
calculated separately for each section. Table II shows the
comparison of network characteristics for the two sections
at the first, fourth, and fifth collections.
As can be seen in Table II, the networks have fairly

comparable topologies and patterns of interactions, with the
network in Sec. A being slightly denser and with a
somewhat smaller diameter, which is to be expected of a
smaller network. Visualization of networks generated

from first, fourth, and fifth collections are shown in
Fig. 5 and the descriptive statistics for centralities are
presented in Table V and Table VI in Appendix B.

D. Predicting shifts in anxiety

Depending on the number of data collections that best
fits a study, as well as the number of constructs being
explored, the number of variables that need to be consid-
ered can become enormously large and the number of
statistical tests to run can reach values that make false
positive findings more likely. Eliminating irrelevant vari-
ables helps to ameliorate some of these concerns. With the
abundance of various centrality measures, each having its
own advantages and disadvantages, and usually quite
different interpretations, it might seem appealing to try
as many as possible and “see what works.” However, as we
stressed earlier, the choice of particular metrics should be
made in light of previous research whenever possible.
In our case, prior studies indicate that students’ networks

in an active-learning classroom evolve over time, and that,
in the case of persistence and academic performance in
physics, social networks established by about halfway
through the semester become more informative [10,16].
With regard to physics anxiety, however, we found no study
that explores it in the context of students’ classroom
network evolution. For this reason we choose to begin
our exploration with student networks at the end of the
semester (i.e., from the fifth SNA survey administration).
At this point in the semester students have had ample
opportunity to interact with nearly all of their classmates,
either in small groups, board meetings, or one on one.
Moreover, multiple rotations of seating assignments facili-
tated and encouraged more extensive interacting through,
e.g., team work, labs, and other assignments with different
groups of students. Therefore, students had the greatest
amount of information with which to evaluate the level and
quality of their interaction with classmates within and
outside of their small groups.
In order to further reduce the number of variables, we

employ a four phase approach in such a way that each

(a)

(b)

FIG. 4. (a) The distribution of the imputed pre (orange hatched
pattern) and post (dark blue solid) anxiety scores showing slight
right skewing. (b) The normalized shift at individual level as
defined in Eq. (1).

TABLE II. The comparison of network characteristics
for first (SNA1), fourth (SNA4), and last (SNA5) collection
for fall 2016 (two sections, A and B): network size (n), density
(Δ), average path length (L), diameter (D), transitivity (Tr) and
reciprocity (ρ↔). Note that instructional staff is removed from the
network.

n Δ D L Tr ρ↔

SNA1 A 53 0.10 7 3.0 0.46 0.69
SNA1 B 73 0.09 8 3.2 0.39 0.65
SNA4 A 53 0.11 5 2.4 0.25 0.44
SNA4 B 73 0.07 7 2.9 0.29 0.45
SNA5 A 53 0.13 6 2.5 0.33 0.42
SNA5 B 73 0.09 6 2.7 0.34 0.52
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subsequent phase of analyses takes into account a narrower,
but more relevant set of factors.

1. Phase I: Which centrality measures
contribute to anxiety shift?

Given our exploratory approach to investigating the
relationship between students’ embeddedness within the
in-class network and anxiety, we run simple linear models
looking at the predictive value of the centrality indices
presented in Sec. III C on the normalized anxiety shift. The
simple models test three measures of centrality as inde-
pendent variables: indegree, outdegree, and closeness.
Because it is unclear from the perspective of physics
anxiety whether it is more important to weigh repeated
interactions with the same individuals as opposed to
multiple interactions with different individuals, we calcu-
late each centrality measure using four different tuning
parameters α [40]. As discussed in Sec. III C, α allows us to
control for the relative importance of the number of edges
and their weights [see Eqs. (2) and (3)]. The four values
we choose, α ∈ f0.0; 0.5; 1.0; 1.25g, reflect four different

ways to weigh the strength of repeated interactions
between the same two individuals. In what follow, we
use the subscript convention to indicate which centrality
we refer to (i.e., inD for indegree, outD for outdegree, and
C for closeness) and superscript for the tuning parameter
used to weigh interactions when calculating a particular
type of centrality measure (e.g., C1.0

inD denotes indegree
with α ¼ 1.0).
We run a simple linear regression for each centrality

measure calculated using the tuning parameters listed
above, i.e., Mslr: anxiety shift ∼ centrality. This gives 12
different tests, four for each measure. Each test is run as a
permutation test for linear models to verify its statistical
significance. Our tests on the network data collected at the
end of the semester reveal no significant relationship
between normalized anxiety shifts and indegree, regardless
of the tuning parameter value. Outdegree (regardless of α)
and closeness (α > 0) are significant predictors of normal-
ized anxiety shift. However, when adjusted for false
positives (type I error), only outdegree remains significant
(for all α). The negative estimates suggest that the greater a
students’ outdegree, the more likely that student is to

FIG. 5. The in-class network evolution for individual networks in section A (N ¼ 53) with node size representing the outdegree from
the fourth collection (α ¼ 0.0) and the color indicating the direction of the shift in anxiety scores (orange: decrease; blue: increase;
yellow: no shift). The networks include only students. (a) First collection; (b) fourth collection; (b) fifth collection.

TABLE III. Summary of the linear regression for anxiety shift as predicted by weighed outdegree from fourth and fifth collection, with
α ∈ f0.0; 0.5; 1.0; 1.25g: the unstandardized estimate (B), the standard error for the unstandardized estimate (SE B), standardized
estimate (β), t-test statistic (t), and R-squared (R2). We consider networks without instructional staff. Significant p values are marked
with an asterisk.

Fourth collection Fifth collection

Centrality B SE B β t R2 B SE B β t R2

C0.0
outD −0.02** 0.007 −0.28** −3.28 0.08 −0.02* 0.007 −0.22* −2.51 0.05

C0.5
outD −0.02** 0.005 −0.28** −3.28 0.08 −0.01** 0.005 −0.25** −2.84 0.06

C1.0
outD −0.01** 0.004 −0.28** −3.22 0.08 −0.01** 0.003 −0.27** −3.16 0.07

C1.25
outD −0.01** 0.003 −0.27** −3.16 0.07 −0.01** 0.002 −0.28** −3.30 0.08

**p < 0.01, *p < 0.05.
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experience a larger decrease in their anxiety from the
beginning to the end of the semester (see Table III for the
regression estimates for outdegree from fifth collection).
The standardized beta estimates β range from −0.22 to
−0.28, with an average of−0.26. In otherwords, on average,
for every 1 standard deviation increase in a student’s
outdegree, their normalized physics anxiety would decrease
by 0.26 standard deviation. This shift could be characterized
as either negative, as compared to anxiety at the beginning of
the semester, or simply a decrease compared to other
students but still positive compared to anxiety at the
beginning of the semester.

2. Phase II: When do centrality measures start to matter?

In order to implement an intervention aimed at mitigat-
ing students’ physics anxiety, it is important to know which
students are “at risk” when there is still time to intervene.
Thus, we seek to identify when during the semester might
be an appropriate time to do so. Since we have access to
data collected five times throughout the semester, we
proceed to investigate the correlation between anxiety shift
and outdegree on earlier collections. We run simple linear
regressions with outdegree as a predictor of normalized
anxiety shifts, i.e, Mslr∶ anxiety shift ∼ centrality, for each
of the four untested data sets, i.e., collections one through
four. We test each collection for the same values of the
tuning parameter α as in phase I. These tests are also run
using permutation techniques. We find outdegree to be a
significant predictor of normalized anxiety shift beginning
in collection four, regardless of the tuning parameter used
(see Table III for the regression estimates for outdegree
from fourth collection). Outdegree is not significantly
correlated with the shift in physics anxiety for collections
one, two, and three.

3. Phase III: Which tuning parameter
makes the most sense?

The tests described in phase II reveal that outdegree
centrality begins to play a role in students’ physics anxiety
shift sometime around the fourth data collection, which
took place after the second midterm which also happens to
be a group exam. In order to determine how to best weigh
repeated interactions between the same two individuals, we
compare the four simple models that rely on different
tuning parameter values using data from the fourth collec-
tion. All of our models share nearly the same R-squared
value and standardized estimates (see Table III). The
negligible variance across these values provides no justi-
fication for choosing one parameter over another, meaning
that giving more weight to repeated interactions with the
same individuals makes no difference in our models. This
suggests that the weighted network data is no more
informative for anxiety shifts than the simple, binary
network would be. The practical implications of this
observation will the discussed in Sec. VI. For that reason,

we choose to test our final model using outdegree with
α ¼ 0.0, i.e., the standard version of degree that does not
take frequency of repeated interactions into account.

4. Phase IV: Determining the final model

Our final linear regression model takes a variety of
control variables into account, as per prior literature. Our
control block includes anxiety at the beginning of the
semester, i.e., precourse scores (pre-anxiety), a binary
gender variable (female or male, gender), and final course
grade (final grade):

Mfull∶ anxiety shift ∼ centralityþ gender

þ final gradeþ pre-anxiety:

We find that, regardless of students’ anxiety at the
beginning of the semester, gender, and final course grade,
outdegree with α ¼ 0.0 is a significant and negative
predictor of physics anxiety shift (standardized estimate
β ¼ −0.19, standard error of the standardized estimate
SEβ ¼ 0.08, t-test statistics t ¼ −2.47, significance level
p < 0.05). Gender is also a significant predictor of stu-
dents’ shift in physics anxiety and male students are more
likely than female students to experience a decrease in
anxiety (β ¼ −0.25, SEβ ¼ 0.08, t ¼ −3.25, p < 0.01).
As expected, the most significant effect on the anxiety shift
comes from the precourse anxiety score (β ¼ −0.41,
SEβ ¼ 0.08, t ¼ −5.42, p < 0.001) and the final grade
(β ¼ −0.35, SE ¼ 0.08, t ¼ −4.54, p < 0.001). However,
to have information about final grades one has to wait until
the end of the semester, at which point no intervention is
possible. Thus, we test our model with the final grade factor
removed. As can be seen in Table IV, in the absence of final
grades data, the outdegree measure and precourse anxiety
become the most significant predictors for anxiety shift. For
every one standard deviation increase in a student’s out-
degree, their normalized physics anxiety would decrease by
0.29 standard deviation.

TABLE IV. Summary of the simplified linear regression model
for anxiety shift with outdegree centrality from fourth collection
(α ¼ 0.0) and with the final grade factor removed: The stand-
ardized estimate (β), the standard error for the standardized
estimate (SE β), and t-test statistic (t). We consider networks
without instructional staff. Significant p values are marked with
an asterisk.

Factor β SE β t

C0.0
outD −0.29*** 0.08 −3.56

Gender (M) −0.24** 0.08 −2.92
Pre-anxiety −0.37*** 0.08 −4.53
***p < 0.001, **p < 0.01.
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V. DISCUSSION

We start our exploration of the relationship between
students’ classroom interactions and their physics anxiety by
looking at changes in the latter. Students’ average pre- and
postcourse anxiety scores exhibit no statistical differences,
yet the data and its distribution indicate that while overall
shift does not occur, individual shifts do. Some students
experience increases in anxiety, while others experience
decreases. We want to better understand the factors that
might contribute to these changes. Prior research in active-
learning physics classrooms indicates that student self-
efficacy, a construct related to anxiety, correlates with the
kinds of classroom interactions students participate in [14].
Moreover, the broader literature on anxiety suggests that
student behavior and classroom participation have recipro-
cal relationships with anxiety [21–23].
We quantify the social integration of students in the

classroom using the tools of SNA. After surveying students
regarding the meaningful academic interactions they par-
ticipated in, the list of interactions derived from their
responses are used to calculate three important measures
of individuals’ relational position in the networks: indegree,
outdegree, and closeness. Simple linear models between
students’ normalized shifts in physics anxiety and each of
these centrality measures reveals a significant relationship
only for the outdegree: the more interactions students report
having, the more likely they are to experience a decrease in
physics anxiety. Given the correlational nature of these
models, we would also expect students whose anxiety
decreases over time to report a greater number of mean-
ingful academic interactions.
The relationship between physics anxiety and classroom

interactions is meaningful in light of the overall trend
towards active learning modalities in physics teaching.
Research suggests that for some students, active learning
environments may cause discomfort and anxiety [15,53,54],
which can lead to suppressed performance or loss of
interest—factors that affect persistence in a major [55].
Physics instructors that solicit peer learning must take into
consideration a variety of ways to group students in order to
optimize outcomes like learning and improved attitudes
towards physics. Given the relationship between these
factors and anxiety, our study suggests students should be
given opportunities to interact with as great a number of
peers as possible, though this statementmerits some nuance.
We expand on this below.
Students’ outdegree can be interpreted in two ways. One

the one hand, it can be thought of as the number of
interactions the student in question actively engages in.
This interpretation assumes that the student is exercising
agency in their interactions, listing peers they purposefully
sought after. Overall trends in network data from this and
similar physics classrooms suggest this to be the case
[56,57]. The other possible interpretation does not neces-
sarily imply a form of student agency, but rather considers

student perception instead. Students who perceive having
had more meaningful interactions, regardless of whether
they initiated these interactions or not, list these interactions
on a survey and, as a result, have greater outdegree centrality
than those who do not perceive having as many meaningful
interactions. This interpretation suggests a reciprocal rela-
tionship between anxiety and the number of meaningful
interactions students perceive having. When taking this
latter interpretive approach, interactions listed may include
passive events where the student was the subject of some-
one’s initiative rather than the actual initiator. We find this
unlikely to be the case given that indegree, a truly passive
measure of which the student has no control, was not a
significant predictor of anxiety shifts. In otherwords, simply
being the subject of others’ interactions is not related to
anxiety shifts. More likely, students must initiate the
interaction in at least some of the cases in order to benefit
from the relationship between outdegree centrality and
negative shifts in physics anxiety. Regardless of one’s
interpretation, the act of identifying and listing meaningful
interactions must be taken by the student.
Our analyses further indicate that, when exploring

student interactions in the physics classroom, the advantage
provided by taking into account the frequency of repeated
interactions between the same two individuals is relatively
small. A comparison of beta estimates and R-squared
values reveals only minor differences between the effect
size of outdegree, regardless of whether we used a tuning
parameter that did not take repeated interactions into
account (i.e., C0.0

outD) or one that greatly advantaged students
with repeated interactions (i.e., C1.0

outD; see Table III). No
other study examining classroom interactions has com-
pared the outcomes of not taking repeated interactions into
account versus doing so. Given the extra cognitive effort
required for students to recall the repeatedness of inter-
actions, as well as the additional work involved in both
collecting and analyzing this type of data, it seems that the
frequency of interactions can be ignored (unless prior
literature indicates a potential increased effect).
On the other hand, students’ self-reported gender, pre-

course anxiety, and final grade in the course all signifi-
cantly contribute to predicting students’ shifts in anxiety.
As expected, male students are more likely to experience
decreases in anxiety, as are students who finished the
semester with higher grades [25–27]. Students with higher
outdegree measured sometime after the second midterm are
also more likely to experience decreases in physics anxiety.
Of all these variables, outdegree lends itself most readily

to direct intervention design given that it can be easily
measured and, unlike final grades, plays a role long before
the semester ends. While, intuitively, an instructor might
pursue helping students’ increase their outdegree by form-
ing large work groups, such an approach fails to incorporate
what we know about effective group formation (e.g., small
meaningful groups are more conducive to learning than
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large, unstructured groups). Instead, instructors can help
students feel less anxious by creating an environment that
fosters and invites social interactions related to the content.
This may include a dynamic small group formation pro-
tocol that allows students to interact with most, if not all, of
their peers at least once during the semester. Moreover,
group boundaries may be loosely defined, such that
students are invited to participate in intergroup interactions,
either with those close by or even with others across the
room, when feasible. We should note that students in our
classrooms, on average, reported interacting with more than
just their group members. Average outdegree during the
fourth and fifth collection is 4.74 (SD ¼ 4.50) and 5.73
(SD ¼ 4.91), respectively, despite the fact that students
were organized in groups of three. The class structure
welcomes and sometimes invites students to interact across
groups, which has also been associated with increased
learning [58].
Thinking carefully about how to invite and solicit

positive academic interactions will help decrease students’
physics anxiety, regardless of their academic performance
or incoming anxiety levels. Though we did not explicitly
test fixed versus nonfixed groups, our social network
approach suggests that classroom structures that restrict
students’ ability to increase their outdegree (e.g., fixing
groups across the entire semester) are less likely to be
associated with decreases in students’ physics anxiety.

VI. SUMMARY

SNA not only provides a novel set of tools that can help
physics education researchers better understand how social
interactions contribute to other factors, it can also be used
in practical ways to assess social dynamics. In this study a
simple count of who interacted with whom would not
have drawn out the nuance provided by differentiating
outdegree from indegree. Moreover we would not have
concluded that closeness, the most significant and mean-
ingful centrality measure in terms of predicting students’
persistence [10], is not related to changes in physics
anxiety. In fact, the advantage of SNA does not lie simply
in what its application reveals as informative, but also
what it reveals as uninformative. In the case of the study
presented here, we discover that repeated interactions with
the same students are not likely to decrease physics
anxiety. The instructor may then consider creating an
environment that encourages those who typically find
safety interacting with the same individuals to step out
of their comfort zone.
Effective group formation processes have long been a

focus of education research. Much of that work revolves
around the composition of small groups (e.g., heterogenous
or homogenous based on performance [59]). While such
studies suggest small, heterogenous groups in terms of
performance are more likely to benefit students, our study
indicates that in addition to group composition, instructors

should consider the “fluidity” or structure of groups. For
example, how rigidly should the instructor define the
boundaries of student roles within a group? Should students
be allowed to reach out to nongroup members for additional
input? While our study did not explicitly test these
variables, we do know that students who have more
opportunities to interact with more peers than just their
assigned group members (i.e., to increase their outdegree)
are more likely to experience decreases in physics anxiety,
regardless of their anxiety levels at the beginning of the
course. Our course structure placed students in groups of
three whose membership changed every few weeks and
these students had many opportunities, even within their
small group, to interact with other groups, such as when
they gathered for large group conferences. Despite the
success of this approach, perhaps other more fluid
approaches may better serve students with physics anxiety.
Our use of SNA makes sense given our research

questions, and our outcomes lead to readily applicable
recommendations for active-learning physics classrooms.
In the case of physics anxiety, instructors can use simple
SNA surveys throughout the semester to gauge what kinds
of interactions their classroom structure is fostering. This
data can be used to quickly calculate student centrality
using programs like R that automate the majority of the
process. While the practicality of this may not seem
apparent to all, broader adoption could lead to the develop-
ment of mobile apps, for example, that automate much of
the process. Similarly, artificial intelligence-based software
could be developed to analyze video of classrooms to
identify interactions and provide recommendations to
instructors based on the analyses.
Finally, we encourage researchers to think broadly about

the potential uses of SNA in research. While we focus here
on the classroom environment, SNA can be applied to
studies of informal learning environments, as well. These
kinds of settings do not necessarily take place in a physical
space either. Mobile phone applications, like Whatsapp and
Messenger, are often used by students outside of class to
share information and organize meetings. These virtual
communication tools lend themselves to exploration via
SNA. Moreover, social networks do not necessarily have to
involve direct interactions, but can be defined to capture
physical proximity networks, attendance-absence net-
works, or networks defined by non-verbal cues, to name
a few. We believe that the growing prominence of active-
learning strategies and the relationship between social
interactions and student success will further require the
use of SNA to help improve student persistence and
retention. Implementing the suggestions here gives the
ultimate test of their efficacy.
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APPENDIX A: THE NORMALIZED GAIN

Since its introduction in 1998, the normalized gain has
been commonly used as a measure of students averaged
improvement over time in various context. Defined as a
measure of the “average effectiveness of a course in
promoting conceptual understanding” [33], it is typically
used to capture the average trends for the entire class. By
adjusting values measured on different scales, it also allows
comparison between different groups. However, the nor-
malized gain is not robust when a large drop in scores
takes place.
For simplicity, lets assume that the scores range from 0%

to 100 %. The normalized gain on an individual level is
defined as

gnorm ¼ post – pre
100 – pre

; ðA1Þ

where pre and post denote the pre- and postcourse scores,
respectively. For averaged gain, as introduced in Ref. [33],
pre and post need to be replaced by the respective averages
over the entire class, i.e., hprei and hposti. While this
equation always yields values smaller or equal to one
(simply because post can be at most 100), when post-score
is lower than prescore (i.e., when a drop in scores rather
than gain is observed), it is possible to see values
gnorm < −1. This happens if

post < 2ðpre – 50Þ;

that is if, after scoring more than 50 % on the pretest, an
individual has a post-score of no more than 2ðpre-50Þ.
While such big differences are less likely when pre and

post-scores are averaged over the entire class, it is still
possible to see a “normalized gain” that is outside of the
½−1; 1� range, invalidating the comparison between sec-
tions. However, this lack of robustness against large drops
in scores should not be thought of as an argument against
using the normalized gain. On the contrary, this property of
gnorm provides researchers with a tool for quick detection of
atypical performances and possible outliers (e.g., students
who did not give genuine responses on the postcourse data
collection). We do argue, however, that a distribution of
individual gains should be considered in addition to
comparing the normalized gain values. As can be seen
in our data, a majority of students did experience a shift in
their anxiety, either positive or negative. However, had we
railed solely of the measure of normalized shift, we would
find no differences as the traditional normalized shift for
our data is less than 0.3 % (see Fig. 3 for the distribution of
normalized shifts at the individual level). This is

particularly important when normalized gain is used to
assess the effectiveness of a novel learning approach in a
smaller classroom, where few outliers can significantly
affect the normalized gain.

APPENDIX B: DESCRIPTIVE STATISTICS FOR
CENTRALITIES

The descriptive statistics for centralities used in the
analysis is presented in Table V and Table VI. The
Shapiro-Wilk test is used to verify the null hypothesis
about the normal distribution for each variable. The median
and interquartile range (IQR) are used to describe the
distribution and dispersion for each measure. Note that the
instructional staff is removed from the network prior to
analysis.

TABLE V. The summary of the descriptive statistics for the
outdegree centrality from fourth collection (N ¼ 53). Based on
the Shapiro-Wilk test, the null hypothesis about the normal
distribution is rejected for all centralities.

Shapiro-Wilk test

Centrality W p Median IQR

C0.0
outD 0.890 <0.001 5.0 7.0

C0.5
outD 0.896 <0.001 7.2 10.2

C1.0
outD 0.897 <0.001 11.0 15.0

C1.25
outD 0.896 <0.001 13.9 19.7

TABLE VI. The summary of the descriptive statistics for all
centrality measures from fifth collection (N ¼ 53). Based on the
Shapiro-Wilk test, the null hypothesis about the normal distri-
bution is rejected for outdegree and closeness, but not for
indegree.

Shapiro-Wilk test

Centrality W p Median IQR

C0.0
inD 0.980 0.056 6.0 3.0

C0.5
inD 0.994 0.843 8.8 4.9

C1.0
inD 0.991 0.613 13.0 8.0

C1.25
inD 0.991 0.574 15.2 10.0

C0.0
outD 0.901 <0.001 5.0 5.8

C0.5
outD 0.906 <0.001 8.2 8.8

C1.0
outD 0.908 <0.001 12.0 13.8

C1.25
outD 0.909 <0.001 15.2 17.5

C0.0
C 0.789 <0.001 0.42 0.08

C0.5
C 0.827 <0.001 0.43 0.09

C1.0
C 0.866 <0.001 0.43 0.11

C1.25
C 0.877 <0.001 0.44 0.11
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